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Abstract—Quantum computers have recently made great
strides and are on a long-term path towards useful fault-
tolerant computation. A dominant overhead in fault-tolerant
quantum computation is the production of high-fidelity encoded
qubits, called magic states, which enable reliable error-corrected
computation. We present the first detailed designs of hardware
functional units that implement space-time optimized magic-state
factories for surface code error-corrected machines.

Interactions among distant qubits require surface code braids
(physical pathways on chip) which must be routed. Magic-state
factories are circuits comprised of a complex set of braids that
is more difficult to route than quantum circuits considered in
previous work [1]. This paper explores the impact of scheduling
techniques, such as gate reordering and qubit renaming, and
we propose two novel mapping techniques: braid repulsion and
dipole moment braid rotation. We combine these techniques with
graph partitioning and community detection algorithms, and
further introduce a stitching algorithm for mapping subgraphs
onto a physical machine. Our results show a factor of 5.64
reduction in space-time volume compared to the best-known
previous designs for magic-state factories.

Index Terms—Quantum Computing, Quantum Error Correc-
tion, Surface Code, Magic State Distillation

I. INTRODUCTION

Quantum computers of intermediate scale are now becoming

a reality. While recent efforts have focused on building Noisy

Intermediate-Scale Quantum (NISQ) computers without error

correction, the long-term goal is to build large-scale fault-

tolerant machines [2]. In fault-tolerant machines, typical quan-

tum workloads will be dominated by error correction [3]. On

machines implementing surface code error correction, fault-

tolerant operations known as magic-state distillation will make

up the majority of the overhead. The problem of achieving

effective magic-state distillation is two-fold: 1) useful quantum

applications are dominated by magic-state distillation, and 2)

their support is extremely expensive in both physical area and

latency overhead. The innovations in this paper address the

largest obstacle facing large-scale quantum computation.

Magic-state distillation requires the preparation (i.e. dis-
tillation) of high-fidelity logical qubits in a particular state,

which can enable the execution of fault-tolerant instructions.

§These two authors contributed equally.

These states require expensive, iterative refinement in order to

maintain the reliability of the entire device.
This work proposes optimizations for the architectural func-

tional units (i.e. “factories”) to generate magic states. Using a

realistic resource overhead model, we introduce optimization

techniques that exploit both instruction level scheduling as

well as physical qubit mapping algorithms. Our approach

analyzes and optimizes, for the first time, fully mapped and

scheduled instances of resource state generation units known

as multilevel block-code state-distillation circuits. We develop

novel technology-independent heuristics based upon physical

dipole-moment simulation to guide annealing algorithms aim-

ing to discover optimized qubit register mappings. We use

these along with a new combination of conventional compiler

methods to exploit structure in the distillation circuitry. To-

gether, these techniques reduce resource overhead (space-time

volume) by 5.64x. We make use of a novel software toolchain

that performs end-to-end synthesis of quantum programs from

high level expression to an optimized schedule of assembly

gate sequences, followed by intelligent physical qubit register

allocation, and surface code simulation.
Our techniques are based on analysis of circuit interaction

graphs, where nodes represent qubits and edges represent

operations between the endpoints. We show that a combination

of graph partitioning-based mapping procedures and dipole-

moment driven annealing techniques work well on structured

surface code circuits. State distillation circuits can be subdi-

vided cleanly into sets of disjoint planar subgraphs. We find

that each of these planar subgraphs can be mapped nearly

optimally. The higher level structure of the distillation cir-

cuits introduces non-trivial permutation steps between circuit

subdivisions as well. We present an algorithm that combines

optimized subgraph mappings with a force-directed annealing

technique that optimizes the transition between the levels

of the circuit. This technique is compared to conventional,

global methods that optimize for specific characteristics of the

interaction graph. The planar graph extraction and “stitching”

technique outperforms global methods.
In summary, this paper makes the following contributions:

• We study the characteristics of two-qubit interactions in
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surface code error corrected machines, and show strong

correlation between circuit latency and the number of

edge crossings in the circuit interaction graph.

• We use this information to develop a heuristic inspired

by simulation of molecular dipoles, and show that this

can be used to generate low-latency qubit mappings by

reducing edge crossings.

• We exploit the structure of the state distillation circuits

to optimize individual rounds of distillation separately,

and combine these rounds with optimized permutation

networks to generate the lowest resource-overhead im-

plementation of distillation units to date.

The rest of the paper is organized as follows: Section II

describes quantum computation, surface code error correction,

and magic state distillation in more detail. Section III describes

related work that aims to optimize state distillation. Section

IV clarifies and summarizes the techniques we use to result

in efficient factory circuits. Sections V and VI specifically

describe the scheduling properties of these circuits and map-

ping techniques along with heuristics utilized to optimize the

procedures. Section VII describes in greater detail the fully

optimized algorithm for achieving efficient factory circuits.

Section VIII describes the results we obtain. Finally, Sections

IX and X discuss future work and conclude.

II. BACKGROUND

A. Basics of Quantum Computation

Quantum computation involves the manipulation of fragile

quantum states by operating on quantum bits (qubits). Each

qubit is capable of existing in a superposition of two logical

states |0〉 and |1〉 written as a linear combination |ψ〉 = α |0〉+
β |1〉, for complex coefficients α, β such that |α|2 + |β|2 = 1.

Upon measurement, the qubit state “collapses” to either |0〉 or

|1〉. |α|2 and |β|2 correspond to the probability of obtaining

a |0〉 or |1〉 respectively. It is sometimes useful to visualize

the state of a single qubit as a vector on the Bloch sphere

[4,5], because we can reinterpret the state |ψ〉 in its spherical

coordinates as |ψ〉 = cos (θ/2) |0〉 + exp (iφ) sin (θ/2) |1〉.
Any operations (quantum gates) performed on a single qubit

can thus be regarded as rotations by some angle ϕ along some

axis n̂, denoted as Rn̂(ϕ). This work focuses on the phase

gate (S ≡ Rz(π/2)), the T gate (T ≡ Rz(π/4)), and the most

common two-qubit gate called controlled-NOT (CNOT) gate.

Quantum computing systems are commonly characterized

by the maximum supportable space-time volume of a com-

putation. This is the product of the number of qubits in the

system with the number of operations (i.e. timesteps) that can

be performed on the system reliably [6]. Reliable machines can

be built in a variety of ways, each of which may result in a

different combination of physical qubit count and computation

time. To capture this, the space time volume of a computation

is a useful metric by which computations and architectural

solutions can be compared.

Fig. 1: An array of (blue) logical qubits in a quantum proces-

sor. Highlighted lines indicate braids implementing two qubit

interactions. These braids must exist spatially and temporally

as pathways between qubits. This introduces communication

congestion that depends upon specific architectural designs.

Braid A and B are crossing braids, which cannot be executed

simultaneously, while braid C is isolated and free to execute.

Bottom-right inset represents a single logical qubit tile com-

prised of approximately d2 physical qubit.

B. Surface Code Error Correction

Quantum states decohere over time which can result in

performance loss and failure to produce the correct output.

In order to maintain the advantage that quantum computation

offers while balancing the fragility of quantum states, quantum

error correction codes (QECC) are utilized to protect quantum

states undergoing a computation. One of the most prominent

quantum error correcting codes today is the surface code
[7–9]. These codes are a family of quantum error correcting

codes that encode logical qubit states into the collective state

of a lattice of physical qubits utilizing only nearest neighbor

interactions between qubits designated as data and ancilla
qubits. For a comprehensive introduction see an excellent

tutorial in [8].

An important parameter of the surface code is the code
distance d. The surface code can protect a logical state up to a

specific fidelity PL, which scales exponentially with d. More

precisely, PL ∼ d(100εin)
d+1
2 , where εin is the underlying

physical error rate of a system [8]. Each logical qubit is made

up of approximately d2 physical qubits, as Fig. 1 shows.

C. CNOT Braiding

A braid, as illustrated in Fig. 1, is a path in the surface

code lattice, or an area where the error correction mechanisms

have been temporarily disabled and which no other operations

are allowed to use. In other words, braids are not allowed to

cross. In braiding, a logical qubit is entangled with another

if the pathway encloses both qubits, where enclosing means

extending a pathway from source qubit to target qubit and

then contracting back via a (possibly different) pathway. These
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paths can extend up to arbitrary length in constant time, by

disabling all area covered by the path in the same cycle.

D. T Gates in Quantum Algorithms

S and T rotation gates are important operations in many

useful quantum algorithms, and their error-corrected execution

requires magic state resources. When the number of T gates

in an application is low, the circuit is in fact able to be

efficiently simulated classically [10]. T gates have been shown

to comprise between 25% and 30% of the instruction stream

of useful quantum applications [3]. Others claim even higher

percentages for specific application sets, of between 40% and

47% [11].

For an estimate of the total number of required T gates in

these applications, take as an example the algorithm to esti-

mate the molecular ground state energy of the molecule Fe2S2.

It requires approximately 104 iteration steps for “sufficient”

accuracy, each comprised of 7.4 × 106 rotations [12]. Each

of these controlled rotations can be decomposed to sufficient

accuracy using approximately 50 T gates per rotation [13]. All

of this combines to yield a total number of T gates of order

1012. As a result, it is crucial to optimize for the resource

overhead required by the execution of T gates at this scale to

ensure the successful execution of many important quantum

algorithms.

E. T Magic States

T and S gates, while necessary to perform universal quan-

tum computation on the surface code, are costly to implement

under surface code. The number of T gates present in an

algorithm is the most common metric for assessing how

difficult the algorithm is to execute [14,15]. To achieve fault-

tolerance, an ancillary logical qubit must be first prepared in

a special state, known as the magic state [16]. A distilled

magic-state qubit is interacted with the data to achieve the T
gate operation, via a probabilistic injection circuit involving 2

CNOT braids in expectation. For simplicity, because of their

rotation angle relationship, we assume all S gates will be

decomposed into two T gates.

These ancillary quantum states are called magic states

because they enable universal quantum computation. Magic

states can be prepared using Clifford quantum operations

[16]. Since the task of preparing these states is a repetitive

process, it has been proposed that an efficient design would

dedicate specialized regions of the architecture to their prepa-

ration [9, 17]. These magic state factories are responsible for

creating a steady supply of low-error magic states. The error

in each produced state is minimized through a process called

distillation [18].

F. Bravyi-Haah Distillation Protocol

Distillation protocols are circuits that accept as input a

number of potentially faulty raw magic states, use some

ancillary qubits, and output a smaller number of higher fidelity

magic states. The input-output ratio, denoted as n → k,

assesses the efficiency of a protocol. This work focuses on

…
… … …

… …

…

…

… …

…

Fig. 2: The recursive structure of the block code protocol.

Each block represents a circuit for Bravyi-Haah (3k+8) → k
protocol. Lines indicate the magic state qubits being distilled,

and dots indicates the extra k+5 ancillary qubits used, totaling

to 5k+13. This figure shows an example of 2-level block code

with k = 2. So this protocol takes as input (3k + 8)2 = 142

states, and outputs k2 = 4 states with higher fidelity. The

qubits (dots) in round 2 are drawn at bigger size, indicating the

larger code distance d required to encode the logical qubits,

since they have lower error rate than in the previous round

[20].

a popular, low-overhead distillation protocol known as the

Bravyi-Haah distillation protocol [18, 19].

To produce k magic states, Bravyi-Haah state distillation

circuits take as input 3k + 8 low-fidelity states, use k + 5
ancillary qubits, and k additional qubits for higher-fidelity

output magic states, thus denoted as the 3k+8 → k protocol.

The total number of qubits involved in each of such circuit is

then 5k+13, which defines the area cost of the circuit module.

The intuition behind the protocol is to make good magic

states out of bad ones. Given a number of low-fidelity states,

the protocol uses a syndrome measurement technique to verify

quality, and discards states that are bad. Then, the circuit will

convert the subset of good states into a single qubit state. The

output magic states will have a suppression of error, only if

the filtering and conversion follows a particular pattern. This is

specified by the parity-check matrix in the protocol. Notably, if

the input (injected) states are characterized by error rate εinject,

the output state fidelity is improved with this procedure to

(1+3k)ε2inject. Due to the filtering step, the success probability

of the protocol is, to first order, given by 1−(8+3k)εinject+· · · .

G. Block Codes

Magic state distillation circuits operate iteratively and hi-

erarchically. Often one iteration of the distillation procedure

is not enough to achieve the desired logical error rate for a

given program. In these cases, squaring the input error rate

will not achieve the required logical error rate to execute the

program. Instead, we can recursively apply the Bravyi-Haah

circuit a number 
 times, in order to achieve the desired error
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rate [21]. Constructing high fidelity states in this fashion is

known as block code state distillation.

As Fig. 2 illustrates, 
 level implementations of this proce-

dure can be constructed recursively that support k� total output

states at fidelity ∼ ε2
�

inject, while requiring (3k+8)� input states.

The structure of the multi-level block code distillation

protocol requires that each module takes in at most one state

from each module from the previous round. This is because

the magic states produced by one module may have correlated

errors. So in order to avoid having correlated error in the inputs

to the next round, each magic state from one module must be

fed into a different module.

At the end of each individual module, error checking is

performed. If the ancillary states show correct measurement re-

sults, the procedure was successful. Additional quality checks

were proposed by [20], which inserts a checkpoint at the end

of each level of the factory. This checkpoint discards groups

of modules when it detects failure within any of the modules

in a group.

Within any particular round r of an 
-level magic state

factory, the number of physical qubits required to implement

that round defines the space occupied by the factory during

round r. Because the output error rates drop each round, the

required code distance increases accordingly. By the “balanced

investment” technique shown in [20], each logical qubit in

round r is constructed using ∼ d2r physical qubits, where

each dr varies with each round. The idea is to use a smaller

code distance to encode a logical qubit in earlier rounds of

distillation to minimize area overhead.

In general, any particular round r may require several

groups of Bravyi-Haah circuit modules. We denote the number

of groups and number of modules per group as gr and mr

respectively. The number of physical qubits qr required to

implement that round scales exponentially with 
 − r as:

qr = mr−1
r g�−r

r (5k+ 13)d2r . This exponential scaling plays a

key role in our mapping techniques.

III. RELATED WORK

Other work has focused primarily on optimizing the effi-

ciency of the magic state distillation protocol. The original

proposal [22] considered a procedure by which 15 raw input

states would be consumed to produce a single higher fidelity

output state. Later works [18, 21, 23] each explore different

realizations of procedures that distill high fidelity magic states,

with each procedure optimizing for asymptotic output rate

and increasing this rate from the original proposal. These

approaches tend to omit overheads related to actual circuit

implementations.

Several prior works [19, 20] have attempted to reduce the

circuit depth of an explicit implementation of the Bravyi-Haah

distillation circuit, as well as perform a resource estimate by

considering the rates at which these factories fail. Specifically,

the work [19] by Fowler et al. is used as a baseline in this

paper.

Additionally, several efforts have been made to build com-

pilers and tools to be more precise about resource estimation

Fig. 3: Flow chart for the overall approach, along with the

section numbers corresponding to each component.

quantification in topological quantum error corrected systems

[24–26]. These techniques have resulted in tools that are used

to compile and schedule arbitrary quantum circuits to topologi-

cal assembly, and topological braid compaction techniques are

used to reduce circuit depth expansions.

Systems level analysis has been performed by two related

projects [3,11], in which the former optimizes the structure of

early distillation protocols, and the latter proposes a micro-

architectural accelerator to handle large amounts of error

correction instructions that exist in fault tolerant machines.

Surface code braid scheduling costs were analyzed in [1]

using an end-to-end toolflow. The work focused on the re-

source impact of the choice of different implementation styles

of surface code logical qubits. That work provides a toolchain

upon which we have built in order to optimize scheduling and

mapping procedures, as well as perform circuit simulations.

Our work introduces the complexity of braid scheduling into

the analysis of the structure of the leading state distillation

procedures in an attempt to concretize the procedures into real

space and time resource costs. The new annealing heuristics

(e.g. dipole-moments) developed specifically for this purpose

also generalize well to any circuit executing on a fault tolerant

machine that uses braiding to perform two-qubit gates.

IV. OUR APPROACH

In order to minimize the space-time volume spent on mul-

tilevel magic state distillation, our approach takes advantage

of the unique characteristics of the state distillation circuitry.
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(a) Planar interaction graph of a capacity
8, single level factory

(b) Non-planar interaction graph of a ca-
pacity 4, two level factory

(c) Multi-level factory interaction graph
with community structure

Fig. 4: Interaction graphs of single and two level factories, and community structure of a capacity 4 two level factory. Each

vertex represents a distinct logical qubit in the application, and each line represents a required two (or more) qubit operation.

(a) shows that the single level distillation circuit has planar interaction graph, so mapping vertices to physical location in

quantum processor is relatively simple. Each level in a multi-level factories like (b) have these planar substructures, but the

permutation edges between rounds destroy the planarity of the two-level ineraction graph. (c) shows that we can leverage the

planarity within each level by exploring community structure of the interaction graph, as shown in Section VI.

We decompose the problem into two aspects – scheduling gate

operations and mapping qubits into 2-D mesh. These two are

intertwined, as the schedule determines what pairs of qubits

need to interact, and mapping influences which subset of them

can interact in the same cycle. An important tool used to

perform these optimizations is the program interaction graph,

from which circuit structure can be extracted. In particular,

we combine the fact that these state distillation circuits are

characterized by natural subdivisions between levels of the

factory, with the ability of graph partitioning embedding

techniques to nearly-optimally map small planar subgraphs of

the program. We exploit this information to design a procedure

that decomposes state distillation into components that are

independently optimized. The flow chart of the procedure is

illustrated in Fig. 3.

Levels of the factory are joined by a specific permutation of

the output states exiting from previous rounds of distillation,

which appears to impose significant overhead on the whole

distillation process. To address this, a force-directed annealing

algorithm is used in conjunction with ideas inspired by Valiant

intermediate-destination routing for permutation networks [27]

to reduce the latency of these permutation steps between block

code levels.

The next few sections describe the scheduling and mapping

optimizations decoupled from one another, in order to show

the specific strengths and weaknesses of each. Section VII then

synthesizes these optimizations into a single procedure.

V. SCHEDULING

This section describes the impact of instruction level opti-

mizations: gate scheduling and qubit reuse. A schedule of a

quantum program is a sequence of gate operations on logi-

cal qubits. The sequence ordering defines data dependencies
between gates, where a gate g1 depends on g0 if they share

a logical qubit and g1 appears later in the schedule sequence

than g0.

A. Gate Scheduling

The impact of gate scheduling can be quite significant in

quantum circuits, and many algorithm implementations rely

upon the execution of gates in parallel in order to achieve

substantial algorithmic speedup. Gate scheduling in quantum

algorithms differs from classical instruction scheduling, as

gate commutativity introduces another degree of freedom for

schedulers to consider. Compared to the field of classical

instruction scheduling, quantum gate scheduling has been

relatively understudied, with only few systematic approaches

being proposed that incorporate these new constraints [28].

In exploring these effects applied to Bravyi-Haah state

distillation circuits, we find that these optimizations are limited

in their effectiveness. While intuitively the modularity of

the block code construction would allow for early execution

of gates arising in late rounds of the distillation procedure,

the checkpoints required to implement module checking as

described in section II-G limit the magnitude of gate mobility.

The structure of the block code circuitry only allows for a

small constant number of gates to by executed early, outside

of the rounds from which they originate. Because of this,

the maximum critical path extension by the introduction of

a barrier preventing gate mobility outside of the originating

round is equal to this small constant multiplied by the number

of block code iterations. The benefit of inserting a barrier at

the end of each round is to create clean divisions between the

rounds. As Fig. 4 shows, the interaction graph for a single

round is a planar graph, while this planarity is destroyed as

rounds are added. Barriers expose this planarity, making the

circuit easier to map. Barriers in these circuits can be inserted

by adding a multi-target CNOT operation into the schedule,

controlled by an ancilla qubit initialized into a logical |0〉 state,

832



and targeting all of the qubits that the schedule wishes to

constrain.

Additionally, gate scheduling order has significant impacts

on network congestion. Scheduling these small constant num-

ber of gates early therefore runs the risk of causing congestion

with previous round activity. This can in fact extend the circuit

latency, even though the circuit has executed gates earlier in

the schedule.

Overall, the insertion of a barrier appears to not significantly

alter the schedule of circuit gates. It does, however, change

the interaction between the schedule and a particular physical

qubit mapping. This relationship will be explored in more

detail in Section VII.

B. Qubit Reuse

We show in this section that an important schedule charac-

teristic of the block protocol to leverage is the hierarchical

structure of the distillation circuit. Between two rounds of

the procedure, all ancillary qubits will be measured for error

checking at the end of the previous round, and reinitialized

at the beginning of the next round. This type of data qubit

sharing (which we call “sharing-after-measurement”) is a false
dependency, because they can be resolved by qubit renaming.

Now this naturally leads to the question: (how) should we

reuse the qubits between multiple rounds?

The first approach we explore is to prevent any false

sharing of the qubits, at the cost of larger area, by always

allocating new data qubits for different rounds. This removes

all dependencies due to ancillary qubits, leaving only true

dependencies on qubits generated in the previous round. This

minimizes execution time at the cost of extra qubits (and

space).

The second approach is to strategically choose which qubits

from the previous round to be reused for the next. This ap-

proach directly reduces the area needed for the entire factory,

at the cost of introducing false dependencies.

In order to make intelligent decisions on which set of ancil-

lary qubits to reuse, it requires us to have information about

the topological mapping of the qubits, since mapping and

reuse decisions together significantly influence the congestion

overhead of the circuit. We will discuss the subtleties of the

tradeoff in more detail later in Section VII.

VI. MAPPING

This section describes the impacts of qubit mapping de-

cisions on the overall circuit overhead. Given a schedule we

can define a program interaction graph as a graph G = (V,E)
where V is a set of logical qubits present in the computation,

and E is a set of two-qubit interaction gates contained in

the program (e.g. CNOT gates). By analyzing this graph, we

can perform an optimized mapping, which assigns a physical

location for each logical qubit q ∈ V .

Fig. 4a and Fig. 4b depict a single level and a two level

factory, respectively, and distinct graph properties are available

to analyze for each. The corresponding program that generates

Fig. 4a is shown in Fig. 5. The single level factory is a planar

1 // Bravyi-Haah Distillation Circuit with K=8, L=1
2 #define K 8
3

4 module tail(qbit* raw_states, qbit* anc, qbit* out)
{

5 for (int i = 0; i < K; i++) {
6 CNOT ( out[i] , anc[5 + i] );
7 injectT ( raw_states[2 * i + 8 + i] , anc[5 + i]

);
8 CNOT ( anc[5 + i] , anc[4 + i] );
9 CNOT ( anc[3 + i] , anc[5 + i] );

10 CNOT ( anc[4 + i] , anc[3 + i] );
11 }
12 }
13

14 module BravyiHaahModule(qbit* raw_states, qbit* anc,
qbit* out) {

15 H ( anc[0] );
16 H ( anc[1] );
17 H ( anc[2] );
18 for (int i = 0; i < K; i++)
19 H ( out[i] );
20 CNOT ( anc[1] , anc[3] );
21 CNOT ( anc[2] , anc[4] );
22 CXX ( anc[0] , anc , K );
23 tail( raw_states , anc , out );
24 for (int i = 1; i < K + 5; i++)
25 injectT(raw_states[2 * i - 2], anc[i]);
26 CXX ( anc[0] , anc , K + 4 );
27 for (int i = 1; i < K + 5; i++)
28 injectTdag(raw_states[2 * i - 1], anc[i]);
29 MeasX ( anc );
30 }
31

32 /* Single-level circuit requires a single module.
33 * Multi-level circuits would require more modules
34 * and barriers in this function. */
35 module block_code(qbit* raw, qbit* out, qbit* anc) {
36 BravyiHaahModule( raw , anc , out );
37 }
38

39 module main ( ) {
40 qbit raw_states[3 * K + 8];
41 qbit out[K];
42 qbit anc[K + 5];
43 block_code( raw_states , out , anc );
44 }

Fig. 5: Example implementation [19, 29] of a single-level

Bravyi-Haah distillation circuit generating K = 8 output

magic states, in Scaffold language [30]. The corresponding

interaction graph is illustrated in Fig. 4a. injectT and

injectTdag implement the probabilistic magic state injection

described in II-E. CXX implements a single-control multi-target

CNOT gate.

graph. While the two level factory is constructed using many

instances of the same single level factory, the requirement for

states to be permuted between levels breaks the planarity of the

resulting interaction graph. This has significant consequences,

and we will leverage them in Section VII.

In order to execute state distillation most efficiently, we must

minimize both the area required for the factory as well as the

latency required to execute the circuit. Braid operations, while

latency insensitive, still cannot overlap with one another. If an

overlap is unavoidable, then one operation must stall while the
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Fig. 6: Heuristics (top) and metrics (bottom) used in our mapping algorithms, as described in Section VI-B and VI-A

respectively. From left to right, edge length is minimized by vertex-vertex attraction, edge spacing is minimized by repulsion

forces on the midpoints of edges, and edge crossings are minimized by applying rotational forces to edges emulating a magnetic

dipole moment. For each metric, the correlation coefficient (r-value) is calculated across a series of randomized mappings of a

distillation circuit, and latency is obtained through simulation, shown in bottom figures. The r-values of metrics with latency

are r = 0.601, −0.625, and 0.831, respectively. The underlying intuition is that shorter edge length, larger edge spacing and

fewer edge crossings will result in fewer braid conflicts and shorter overall latency.

other completes. As a consequence, we aim to minimize the

number of these braid “congestions”.

A. Heuristics for Congestion Reduction

Three common heuristics which we analyze for minimizing

network congestion are: edge distance minimization, edge

density uniformity, and edge crossing minimization. We see

that they each correlate in varying degrees with actual circuit

latency overhead for these quantum circuits, as shown in

Fig. 6.

1) Edge Distance Minimization: The edge distance of the

mapping can be defined as the Euclidean distance between the

physical locations of each endpoint of each edge in the inter-

action graph. Intuitively, in classical systems network latency

correlates strongly with these distances, because longer edges

require longer duration to execute. As discussed in Section

II, for surface code braiding operations, there is no direct

correspondence between single edge distance and single edge

execution latency. However, longer surface code braids are

more likely to overlap than shorter braids simply because they

occupy larger area on the network, so minimizing the average

braid length may reduce the induced network congestion.

2) Edge Density Uniformity: When two edges are very

close to each other, they are more likely to intersect and cause

congestion. Ideally, we would like to maximize the spacing

between the edges and distribute them on the network as

spread-out and uniformly as possible. This edge-edge repul-

sion heuristic therefore aims to maximize the spacing between

braid operations across the machine.

3) Edge Crossings Minimization: We define an edge cross-

ing in a mapping as two pairs of endpoints that intersect in

their geodesic paths, once their endpoint qubits have been

mapped. These crossings can indicate network congestion,

as the simultaneous execution of two crossing braids could

attempt to utilize the same resources on the network. While

the edge crossing metric is tightly correlated with routing

congestion, minimizing it has been shown to be NP-hard

and computationally expensive [31]. An edge crossing in a

mapping also does not exactly correspond to induced network

congestion, as more sophisticated routing algorithms can in

some instances still perform these braids in parallel [32]. Some

algorithms exist to produce crossing-free mappings of planar

interaction graphs, though these typically pay a high area cost

to do so [33].

Fig. 6 summarizes the correlation of each of these three

metrics to surface code circuit latency.

B. Mapping Algorithms

With these metrics in mind, we explore two procedures

designed to optimize mappings. First, we employ a local,

force-directed annealing optimization technique designed to

transform the optimized mappings of Fowler et al. [19] dis-

cussed in Section III, specifically targeting optimization of the

aforementioned metrics. Next, we compare this to a mapping

procedure based upon recursive graph partitioning and grid

bisection embedding.
1) Force-Directed Annealing: The full force-directed (FD)

procedure consists of iteratively calculating cumulative forces

and moving vertices according to these forces. Vertex-vertex
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attraction, edge-edge repulsion, and magnetic dipole edge

rotation are used to calculate a set of forces incident upon

each vertex of the graph. Once this is complete, the annealing

procedure begins to move vertices through the mapping along

a pathway directed by the net force calculation. A cost metric

determines whether or not to complete a vertex move, as a

function of the combination of average edge length, average

edge spacing, and number of edge crossings. The algorithm it-

eratively calculates and transforms an input mapping according

to these force calculations, until convergence in a local minima

occurs. At this point, the algorithm alternates between higher

level community structure optimizations that either repulse all

nodes within distinct communities away from one another, or

attract all nodes within a single community together, which

breaks the mapping out of the local minimum that it has

converged to. This procedure is repeated until reaching a pre-

specified maximum number of iterations.

Within an interaction graph, subsets of qubits may interact

more closely than others. These groups of qubits can be

detected by performing community detection analysis on an

interaction graph, including random walks, edge betweenness,

spectral analysis of graph matrices, and others [34–39]. By de-

tecting these structures, we can find embeddings that preserve

locality for qubits that are members of the same community,

thereby reducing the average edge distance of the mapping

and localizing the congestion caused by subsets of the qubits.

Edge Distance: To minimize the overall edge distance

of the mapping, the procedure calculates the centroid of

each vertex by calculating the effective “center of mass” of

the neighborhood subgraph induced by this vertex, i.e. the

subgraph containing only the vertices that are connected to

this vertex, along with the corresponding edges. The center

location of this set is calculated by averaging the locations

of all of the neighbors, and this is assigned as the centroid

for this vertex. This creates an attractive force on this vertex

that is proportional in magnitude to the distance between the

vertex and the centroid, as shown in the top-left panel in Fig.

6. Forces of this type are standard in graph drawing techniques

[40].

Edge Density: In an attempt to optimize and uniformly

distribute the edge density of the mapping, repulsion forces

are defined between each pair of distinct edges on the graph.

Specifically, for each pair of edges, a repulsion force is created

on the endpoints of magnitude inversely proportional to the

square of the distance between the midpoints of the edges. This

force law is reflected in many typical graph drawing techniques

as well, that aim to uniformly distribute graph vertices and

edges [41, 42].

Edge Crossings: Even though directly minimizing edge

crossings in a graph is in general a difficult task to perform,

we can approximate it by modeling each edge as a magnetic

dipole moment, and the rotational forces applied on each edge

will prefer (anti-)parallel orientations over intersecting ones,

as shown in Fig. 6. North and south poles are assigned to

every vertex in the graph, and attractive forces are created

between opposing poles, while repulsive forces are added
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(a) In single-level factories, both
techniques can nearly optimally
execute these circuits, even as
capacity increases.

(b) In two-level factories, the dif-
ference between the theoretical
lower bound and the attained cir-
cuit latencies widens.

Fig. 7: Overall circuit latency obtained by graph partitioning

embedding on single and two level distillation factories. The-

oretical lower bounds are calculated by the critical path length

of the circuits, and may not be physically achievable.

between identical poles. The assignment of the poles is done

by producing a 2-coloring of the interaction graph. Notice

that the graph is not always 2-colorable, and it usually is

not. However, within each time step in the schedule, a vertex

(qubit) can have degree at most 2, and is always acyclic. This

is because we have a schedule that contains only 2-qubit gates

and single-control multi-target CNOTs. Any two gates cannot

be performed on the same qubit simultaneously, and the multi-

target CNOTs will look like a vertex-disjoint path.

Community Structure Optimizations: To respect the prox-

imity of the vertices in a detected community, we break up

our procedure into two parts: firstly, impose a repulsion force

between two communities such that they do not intersect and

are well separated spatially; secondly, if one community has

been broken up into individual components/clusters, we join

the clusters by exerting attracting forces on the clusters. In

particular, we use the KMeans clustering algorithm [43,44] to

pinpoint the centroid of each cluster within a community and

use them determine the scale of attraction force for joining

them.

2) Recursive Graph Partitioning: To compare against the

local force-directed annealing approach, we also analyzed the

performance of a global grid embedding technique based upon

graph partitioning (GP) [45–47]. In particular, we utilized a re-

cursive bisectioning technique that contracts vertices according

to a heavy edge matching on the interaction graph, and makes

a minimum cut on the contracted graph. This is followed by an

expanding procedure in which the cut is adjusted to account

for small discrepancies in the original coarsening [48, 49].

Each bisection made in the interaction graph is matched by a

bisection made on the grid into which logical qubits are being

mapped. The recursive procedure ultimately assigns nodes

to partitions in the grid that correspond to partitions in the

original interaction graph.

The primary difference between these two techniques is

that the former force-directed approach makes a series of

local transformations to a mapping to optimize the metrics,

while the graph partitioning approach can globally optimize

the metrics directly.
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3) Scalability Analysis: We can now compare the compu-

tational complexity of the two graph optimization procedures.

Suppose we have an interaction graph of n vertices and m
edges. Each iteration of the force-directed annealing procedure

consists of three steps, vertex attraction, edge repulsion, and

dipole moment rotation. In the worst case, the attraction

forces are computed along each edge in O(m) time; the

repulsion force computation requires O(m2) time; rotations

are calculated first by a DFS-style graph coloring and then by

forces between vertices with O(n2).
Graph partitioning requires recursively finding minimum

weight cut, and partition the graph along the cut. Specifically,

it requires log2(n) recursive iterations, each of which is a min-

cut algorithm on partitions of the graph that requires O(n+m)
time, combining to O((n+m) log2(n)) [48].

4) Performance Comparison: Fig. 7a and 7b indicate that,

while both techniques perform well for single level factories,

the global technique is much better at optimizing higher level

factories. This is likely due to the local nature of the force-

directed procedure, which is being used to transform the linear

hand-optimized initial mapping of the factory. For higher level

factories, this hand-optimized mapping incurs high overheads,

and the local optimizations are only able to recover a portion

of the performance proportional to the original mapping.
While the global graph partitioning technique works well

in comparison with the local procedure, there is a widening

performance gap between the resulting mapping and the criti-

cal resource volume, as factories grow in capacity and levels.

This likely indicates that while the procedure is able to very

effectively optimize small planar graphs, it has a more difficult

time as the size and complexity of the graphs increase. In fact,

single level factories have planar interaction graphs, and graph

partitioning is able to optimize the mapping of these graphs

nearly up to critical resource volume.

VII. HIERARCHICAL STITCHING METHOD

We here present the outline of the iterative, synthesized

optimization procedure that make use of the scheduling and

mapping techniques we established earlier. To take advantage

of the facts that most global optimization techniques (such as

graph partitioning and force-directed annealing) work well on

small planar graphs and that the circuit modules within each

round form disjoint planar subgraphs, we develop a stitching

scheme, as depicted in Fig. 8, that respects the hierarchi-

cal structure and internal symmetry of the multilevel block

protocol while simultaneously optimizing for the previously

discussed congestion heuristics.
As shown in Fig. 3, we perform optimizations iteratively

on the interaction graph. In each iteration, our procedure is

decomposed into two phases: (1) inter-round optimization that

embeds and concatenates each module in the current round,

and (2) intra-round optimization that stitches permutation

edges and arranges modules in the next round.

A. Intra-Round Graph Concatenation
Starting with the first round of a multilevel factory, we use

single-level optimization techniques (such as force-directed

Fig. 8: Embedding for a capacity K = 4, level L = 2 factory.

The stitching procedure optimizes for each round to execute at

nearly critical path length in latency, and optimizes for inter-

round permutation step with force-directed optimizations.

annealing or graph partitioning) to nearly optimally embed

the individual planar modules. They are then concatenated
together to form a full mapping of the first round of the factory

circuitry. The concatenation scheme works well due to the

fact that modules in a round do not interact with each other

under block code protocol. Notice that putting barrier between

rounds enables us to isolate and individually optimize for each

round, as discussed in Section V. Because the modules in each

round of the factory are identical in schedule to those in all

other rounds, the optimized graph partitioning embedding does

not need to change for each round.

B. Inter-Round Permutation Optimization

The recursive block code structure requires that the output

from lower levels of the factory be permuted and sent to

new locations for the subsequent rounds. This can create

highly-congested “permutation steps” in the circuit, where

even though each round is scheduled and mapped nearly

optimally, the cost to permute the outputs of one round to the

inputs of the next round are quite high, as illustrated in the

comparison of Fig. 9d with Fig. 10c. We therefore present the

following sequence of procedures that target the inter-round

communication/permutation overhead.

1) Qubit Reuse and Module Arrangement: The permutation

edges in between two rounds are due to communications

between the output qubits from the previous round and the

input qubits in the next round. Given an optimal layout of

the modules/blocks from the previous round, we know where

the output states are located. Since all qubits except for the

outputs are measured, error-checked, and then reinitialized by

the time the next round starts, we can choose which regions

of qubits to be reused for the next round, as long as for

each module the following constraints are satisfied: (1) do not

overlay a module on top of output qubits that are not supposed

to be permuted to this particular module (see details about port

assignment in VII-B2), and (2) allocate enough qubits required
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(a) Resource ratios comparing
qubit reuse to non-reuse protocols

(b) Volume differentials between
qubit reuse and non-reuse protocols.

(c) Red dots show optimized
intermediate destinations.
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Fig. 9: (a)-(b): Sensitivity of achievable quantum volumes by different optimization procedures. Shown is the percentage

difference of the protocol with reusing (R) or without reusing (NR) qubits: (NR−R)/NR. Notably, reuse policy is a better for

both the linear mapping and graph partitioning techniques, while no-reuse offers more flexibility for force-directed procedure to

optimize. (c)-(d): Circuit latency specifically for the inter-round permutation step. Latency is reduced by 1.3x with Valiant-style

intermediate destinations for each interaction, and using force-directed annealing to optimize their locations.

by the code distance as discussed in II-G. Fig. 9a and 9b show

that reusing qubits benefits the linear and graph partitioned

mapping techniques, while force-directed annealing prefers the

flexibility added by not reusing qubits.
2) Port Reassignment: To avoid having correlated error in

the inputs to the next round, each module in the next round

must gather input states from different modules in the previous

round, as shown in II-G. Suppose one module from the next

round wants a magic state from a previous-round module,

when there are multiple outputs produced in that module, it

does not matter which one you choose. Therefore, it leaves the

optimization procedure to decide which output port to use, so

as to minimize congestions in the permutation step.
3) Intermediate Hop Routing: Lastly, we employ a varia-

tion of the force-directed annealing algorithm from Section VI.

Specifically, we introduce intermediate destinations between

each output state from a prior round and the input state to

the next round, as depicted in Fig. 9. While Valiant routing

with randomized intermediate destinations does not increase

performance very significantly, we are able to use force-

directed annealing based upon edge distance centroids, edge

repulsion, and edge rotations in order to move the intermediate

destinations into preferable locations.
This synthesized procedure is able to leverage the schedul-

ing techniques of barrier insertion, combined with nearly

optimal planar graph embedding performed by recursive graph

partitioning, and force-directed annealing to obtain a signif-

icant resource reduction over any other optimization proce-

dures.

VIII. RESULTS

A. Evaluation Methodology: Simulation Environment
To perform evaluation of our methods, we implemented

each configuration of the full Bravyi-Haah distillation protocol

in the Scaffold programming language, and compiled this to

gate-level instructions (e.g. Fig. 5). These instructions are

fed into a cycle-accurate network simulator [1] that accu-

rately executes the scheduling and routing of braids on a 2-

dimensional surface-code qubit mesh. We extended both of

these tools to support a multi-target CNOT gate. The simulator

first schedules braids in parallel where the interaction graph

allows. If braids intersect on the machine, the simulator inserts

a stall to allow one braid to complete before the other. To

perform scheduling, the simulator treats any data hazard (i.e.

the presence of the same qubit in consecutive instructions)

as a true dependency. This eliminates gate-level optimizations

from being automatically performed, but it simultaneously

allows for the introduction of barrier type gates. These are

implemented by inserting a single gate involving all qubits

of the machine (specifically a multi-target CNOT operation

controlled on an extra qubit set to the zero state, and targeting

all other qubits of the machine). Gate-level optimizations

involving the commutativity relations of specific operations

are performed by hand, independent of scheduling.

B. Single-Level Factory Evaluation

We notice first that the linear mapping procedure [19]

performs well, even as the capacity of the factory increases.

In Fig. 7a, we see that the linear mapping technique actually

is able to approach the theoretical minimum required latency

for each of these circuits. These mappings were specifically

designed to optimize for these single level factories, which

justifes these scaling properties.

Our proposed force-directed mapping approach described

in section VI-B1 is able to improve slightly from the linear

mapping technique in most cases. This is due to the strong

correlation of the metrics that the approach optimizes, to the

realized circuit latency.

Graph partitioning techniques described in VI-B2 under-

perform the linear mapping and force directed procedures,

although they are still competent with respect to the theoretical

minimum resource requirements. Because of the simplicity of

the circuit and the targeted optimizations that were perform

specifically for these small circuits, the advantage from the

global nature of the graph partitioning method is significantly

diminished.

The realistic circuit latency as executed in simulation,

required circuit area, and corresponding quantum volume for
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Fig. 10: One and two level factory resource requirements. For the single level factory, we present latencies (10a), areas (10b),

and achieved space-time volumes (10e). For the two-level factory, the right-hand side shows latencies (10c), areas (10d), and

volumes (10f). All three optimizations are effective for reducing the overhead of single level factories. For two level factories,

each procedure trades off space and time separately, resulting in the lowest achievable volume by that procedure. Hierarchical

stitching is able to reduce space-time volume by 5.64x.

Level 1 Level 2
Procedure K = 2 4 8 10 24 K = 4 16 36 64 100

Random 1.11 × 104 1.82 × 104 5.43 × 104 6.40 × 104 2.70 × 105 − − − − −
Line(NR) 6.53 × 103 1.10 × 104 2.53 × 104 2.94 × 104 1.29 × 105 3.68 × 105 1.19 × 106 4.19 × 106 1.25 × 107 3.34 × 107

Line(R) 6.53 × 103 1.10 × 104 2.53 × 104 2.94 × 104 1.29 × 105 3.55 × 105 1.15 × 106 3.80 × 106 1.22 × 107 2.53 × 107

FD 6.30 × 103 1.08 × 104 2.53 × 104 2.88 × 104 1.21 × 105 3.22 × 105 1.15 × 106 3.72 × 106 9.45 × 106 1.98 × 107

GP 6.73 × 103 1.23 × 104 2.91 × 104 3.33 × 104 1.48 × 105 3.48 × 105 9.41 × 105 2.24 × 106 4.45 × 106 8.17 × 106

HS − − − − − 2.32 × 105 7.93 × 105 1.80 × 106 4.06 × 106 5.93 × 106

Critical 6.28 × 103 1.07 × 104 2.27 × 104 3.03 × 104 1.12 × 105 1.82 × 105 4.48 × 105 8.85 × 105 1.53 × 106 2.43 × 106

TABLE I: Quantum volumes required by factory designs optimized by: randomization (Random), linear mapping (Line) with

and without qubit reuse (R, NR), force-directed (FD), graph partitioning (GP), and hierarchical stitching (HS).

single level magic state distillation factories are shown in Fig.

10a, 10b, and 10e. The best performing approach for each of

the single level factories closely approximates the theoretical

minimum latency and space-time volume required by these

circuits. This is leveraged by our iterative procedure and used

to ultimately achieve the most efficient circuit expression.

C. Multi-Level Factory Evaluation

1) Effects of Qubit Reuse Protocols: As anticipated, by

electing to reuse qubits for later rounds in the distillation

circuits, the overall circuit consumes less area at the cost

of higher latency. Qubit reuse, for both the linear mapping

and graph partitioning optimization methods, results in lower

space-time volume.

The force directed procedure actually achieves a lower

volume when qubits are not reused. This is due to two factors

introduced by qubit reuse. First, the average degree of the

interaction graph has increased due to the introduction of false

dependencies. This restricts the optimization procedure from

being able to minimize the heuristics cleanly, as each qubit

is more tightly connected to others, reducing the degrees of

freedom in the graph. Second, there is more area in the graph,

which widens the search space available for the procedure.

With more possible configurations, the algorithm is more

likely to find more optimized mappings.

2) Optimization Procedure Comparison: Fig. 10 shows the

minimized space-time volumes achieved by each optimization

procedure. While the linear mapping and force-directed proce-

dures were able to nearly optimally map single level factories,

the performance deteriorates significantly when moving to

multi-level factories. In these factories, Hierarchical Stitching

is able to outperform the other optimization strategies, as it

synthesizes the best performing components of each.

We also considered both qubit reuse and non-reuse policies.

The optimal combinations vary slightly for each procedure: the

linear mapping and graph partitioning strategies always per-

form best with qubit reuse, while the force directed procedure

performs best with qubit reuse for capacity 4 and 16 two level

factories, and without qubit reuse for capacity 36 and beyond.

This is due to the additional degrees of freedom that avoiding
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qubit reuse injects, as discussed above. The final results plots

show these configurations.

In moving to multi-level factory circuits, even though there

is significant modularity and symmetry in the factory, the

introduction of the output state permutation from one level to

the input states of the next introduces severe latency overheads.

Without taking this into consideration, the linear mapping

procedures suffer from large latency expansions in attempting

to execute multi-level circuits, with the effect compounding

as the size (output capacity) of the factory increases. Fig. 10f

shows that the force-directed approach is able to improve to

a maximum reduction of ∼1.27x from these linear mappings,

but is constrained by how poorly these mappings originally

perform.

The graph partitioning technique is able to simultaneously

optimize for the entirety of the multi-level circuit, including

the inter-round communication steps. With all of this informa-

tion, the technique is able to minimize interaction graph edge

crossings and edge lengths, which results in a more efficient

expression of the circuits overall for larger two level circuits.

Smaller two level circuits are still dominated by the intra-

round execution overheads, which are able to be effectively

minimized by linear mapping and force directed techniques.

Once multi-level factories become large enough (occurring

in Fig. 10f at capacity 16), the inter-round effects begin to

dominate. This is the point when graph partitioning techniques

are able to outperform other methods.

The proposed hierarchical stitching technique is able to

leverage the strengths of the force directed and graph partition-

ing methods to more effectively reduce resource consumption

by mapping each round to near optimality and utilizing the

same force-directed technique combined with the introduction

of intermediate destinations to mitigate the overheads incurred

by inter-round communication. Within all explored multi-level

factory circuits, these optimizations further reduced resource

consumption. In the largest case, a capacity 100 two level

factory shows a 5.64x reduction in overall consumed quantum

volume when moving from the linear mapping approach

without reusing qubits, to hierarchical stitching.

IX. FUTURE WORK

There are a number of immediate extensions to this work:

• System-Level Performance. We are studying the effect of

higher-level factory optimizations on application perfor-

mance. This includes analysis of resource distribution,

comparison of factory system layout topologies, as well

as architectures with prepared state buffers. The interac-

tion with the Hierarchical Stitching procedure is currently

being analyzed.

• Stitching Generalization. Our proposed hierarchical

stitching procedure can be applied to other hierarchical

circuits, and to arbitrary circuits coupled with procedures

that detect hierarchical sub-circuits. For example, we may

extract sets of (planar) sub-divisions from the interaction

graph and map each sub-division onto the 2-D surface,

and perform permutations (swap gates) that patches the

set of mappings together.

• Teleportation vs. Lattice Surgery vs. Braiding. Along

the lines of [1, 20], we plan to explore the impacts of

changing the surface code interaction style. Our proposed

optimizations may likely change the trade off thresholds

presented in [1].

• Loss Compensation. Typically in distillation protocols,

when magic states are marked as defective they would

be discarded and cause module failure. Future work

would include implementing protocols that compensates
the loss of those defective magic states by having back-

up maintenance modules that feed high-fidelity states to

ensure the completion of the distillation round.

• Area Expansion. It is possible to expand the utilized area

for these distillation circuits and reduce the execution

latency. Our force directed procedures work well with

additional area, so this may reduce overall consumed

space-time volume.

X. CONCLUSION

Error correction is the largest performance bottleneck of

long-term quantum computers, and magic-state distillation is

the most expensive component. Known optimized scheduling

and mapping techniques for state distillation circuits tend

to work well for small, single level factories, but quickly

incur large overheads for larger factories. We have proposed

a technique that synthesizes mapping and scheduling opti-

mizations to take advantage of the unique efficiencies of

each, which allows for a significant 5.64x reduction in the

realistic space-time volume required to implement multi-level

magic state distillation factories. Global optimizations like

graph partitioning and force-directed annealing work well, but

leveraging structure of the block code circuitry combined with

the specific strengths of both graph partitioning and force-

directed annealing allows for the most improvement, resulting

in large factors of resource reduction overall.
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